

Last Updated: April 27, 2016
© 2016 Adobe Systems Incorporated. All rights reserved.

Adobe Sign

API Implementation Guide

Adobe Sign

Adobe Sign API Implementation Guide 2

Table of Contents

Overview .. 3

Getting Started.. 3

Adobe Sign Interface ... 4

Creating An Integration Key .. 4

Retrieving Your Integration Key ... 11

Revoking Access and OAuth Tokens .. 13

Creating Your Application .. 16

Configuring OAuth for Your Application .. 19

Adobe Sign Scenarios .. 24

Scenario 1: Sending & Tracking from an Application with REST-based API .. 24

Scenario 2: Sending & Tracking from an Application with SOAP-based API .. 25

Scenario 3: Embedding Adobe Sign eSigning in An Application .. 27

Exposing Additional Adobe Sign Actions .. 28

Adobe Sign Events .. 29

Event System Requirements .. 29

List of Supported Events .. 29

Using Adobe Sign Events .. 31

Adding an Event Handler on the Parent Page .. 31

Embedding the Adobe Sign UI in an iFrame ... 31

Adobe Sign

Adobe Sign API Implementation Guide 3

Overview
Developers can build a variety of different integrations with Adobe Sign using a web services API for
communications. A web service is a standards-based, secure and scalable method of establishing
communications between systems over the Web. Once built, integrations allow users to initiate the Adobe Sign
signing experience entirely from within the external application. Developers can also incorporate the
functionality of Adobe Sign into their external applications by embedding the Adobe Sign user interface (UI)
within those applications. External applications can also receive status updates in real-time for transactions
initiated using Adobe Sign. These external applications can also retrieve and store copies of the signed
agreements.

This document contains information on the API integration process. It includes the following sections:

• Adobe Sign Interface—This section provides instructions on how to use the Adobe Sign interface to
establish an integration with an external application. It includes information on document keys and the
configuration of OAuth. Note that the Adobe Sign API interface is only available to Enterprise Premium
[P2] customers.

• Adobe Sign Scenarios—This section describes various scenarios for using the Adobe Sign APIs to integrate
with an application. Both SOAP and REST-based APIs are covered.

• Adobe Sign API Events—This section provides information on integrating Adobe Sign and external
applications by embedding the Adobe Sign user interface (UI) into those external applications. It also
covers how to send information about events or actions in Adobe Sign to external applications.

Getting Started
Developers can sign up online for a free unlimited Adobe Sign Developer account at
https://secure.echosign.com/public/upgrade?type=developer. Key developer resources are available as follows:

REST

• REST-based Documentation: https://secure.echosign.com/redirect/latestRestApiMethods

SOAP

• SOAP-based Documentation: https://secure.echosign.com/redirect/latestApiMethods
• Adobe Sign API WSDL: https://secure.echosign.com/redirect/latestApiWsdl

Note: Although the SOAP-based API is supported, we strongly encourage customers to implement using
the REST-based API. Future development efforts will center on the REST API.

SDK with sample code

• Development SDK: https://secure.echosign.com/redirect/latestApiDevelopersKit

OAuth

• OAuth Documentation: https://secure.na1.echosign.com/public/static/oauthDoc.jsp

https://secure.echosign.com/public/upgrade?type=developer
https://secure.echosign.com/redirect/latestApiWsdl
https://secure.na1.echosign.com/public/static/oauthDoc.jsp

Adobe Sign

Adobe Sign API Implementation Guide 4

Adobe Sign Interface
Developers can integrate Adobe Sign with proprietary solutions (business applications or company websites)
using the Adobe Sign REST or SOAP-based APIs. Developers can also incorporate the functionality of the
Adobe Sign into their external applications by embedding the Adobe Sign user interface (UI) within those
applications.

Developers must be authorized to access the Adobe Sign data that the integration will need to modify or
create. The preferred authorization method involves using the Adobe Sign OAuth permission model, which
complies with the OAuth 2.0 specification. However, if the solution does not support OAuth, you can also use
an Integration Key.

The SOAP-based API works with legacy API Keys, the new Integration Keys, and OAuth tokens. The REST-based
API works with Integration Keys and OAuth tokens.

Note: Starting with document service 16, API keys have been deprecated and are no longer supported. If you
have a legacy application and have used a legacy API key to integrate, we recommend that you replace
this key with an Integration Key or an OAuth token to provide additional security and customization
options.

Creating An Integration Key
OAuth is the preferred permission model for when integrating Adobe Sign with external applications. (See the
Using OAuth to Access Adobe Sign APIs document for more information on OAuth). However, you can create
and use an Integration Key to integrate with applications that do not support OAuth or if you prefer to not use
OAuth with your application. Only an Account or Group Admin can create an Integration Key.

Note: If you plan to integrate more than one application using an Integration Key, we recommend that you
create a unique Integration Key for each.

If you need to view or revoke an Integration Key after it is created, this can be done from the Access Tokens
page. (See Retrieving Your Integration Key for more information.)

https://globalllc.echosign.com/public/static/oauthDoc.jsp

Adobe Sign

Adobe Sign API Implementation Guide 5

To create an Integration Key:

1. Click the Account tab, click on Adobe Sign API, then click API Information.

Adobe Sign

Adobe Sign API Implementation Guide 6

2. In the API Information page, click the Integration Key link.

Adobe Sign

Adobe Sign API Implementation Guide 7

The Create Integration Key dialog displays.

Adobe Sign

Adobe Sign API Implementation Guide 8

3. In Create Integration Key dialog, do the following:

a. Enter an Integration Name. Names must be alphanumeric, but can also include underscores (_). The
maximum length is 255 characters. The name should reflect its end purpose. For example, if the
Integration Key will be used to integrate with an Office365 or DropBox application, you might use
office365IntegrationKey or DropBoxIntegrationKey respectively. Please note this name. You will need to
know it to retrieve the key that is created. (See Retrieving Your Integration Key for more information.)

b. Enable the scope options for your application. To enhance security, enable only those options that are
required by your application. (The example below shows one possible set of options.)

Adobe Sign

Adobe Sign API Implementation Guide 9

Adobe Sign

Adobe Sign API Implementation Guide 10

c. Click the Save button.

The new Integration Key displays in the Access Tokens page.

Adobe Sign

Adobe Sign API Implementation Guide 11

Retrieving Your Integration Key
You can retrieve Integration Keys using the Access Tokens page. Only an Account or Group Admin can retrieve
an Integration Key.

To retrieve an Integration Key:

1. Click the Account tab, click on Personal Preferences, then click Access Tokens.

2. In the Access Tokens page, click to select the row for your Integration Key access token.

Adobe Sign

Adobe Sign API Implementation Guide 12

3. Click Integration Key.

4. A dialog displaying the Integration Key displays.

5. Click OK to close the dialog.

Adobe Sign

Adobe Sign API Implementation Guide 13

Revoking Access and OAuth Tokens
Access tokens as well as OAuth refresh tokens can be revoked. If an access token is revoked and it has a
corresponding refresh token, the refresh token is also revoked. Only an Account or Group Admin can revoke an
Access or OAuth Token.

To revoke an Access or OAuth Token:

1. Click the Account tab, click on Personal Preferences, then click Access Tokens.

2. Select the row for your Access or OAuth Token.

Adobe Sign

Adobe Sign API Implementation Guide 14

Adobe Sign

Adobe Sign API Implementation Guide 15

3. Click Revoke.

4. In the Delete dialog, click Yes.

The Access Token page redisplays showing that the token has been deleted.

Adobe Sign

Adobe Sign API Implementation Guide 16

Creating Your Application
You must create your application in Adobe Sign before you can authorize and integrate it. (See also Using
OAuth to Access Adobe Sign APIs for more information). Only an Account or Group Admin can create an
application.

To create an application:

1. Click the Account tab, click on Adobe Sign API, then click API Applications.

https://globalllc.echosign.com/public/static/oauthDoc.jsp
https://globalllc.echosign.com/public/static/oauthDoc.jsp

Adobe Sign

Adobe Sign API Implementation Guide 17

2. Click the Create button ().

Adobe Sign

Adobe Sign API Implementation Guide 18

3. In the Create dialog, do the following:

a. Enter a Name and Display Name for your application.

b. Select one of the following Domain options:

• Customer—Specifies that the application can only access data within your account. Select this
option you're developing an application for internal use.

• Partner—Specifies that the application can access any authorized Adobe Sign account. Select this
option if you're developing an application for other users.

Note: Partner applications will not have full access to other accounts until they have been Certified.
Click here to learn more about Certification.

c. Click Save.

https://www.echosign.adobe.com/en/products/echosign-api-dev-center/echosign-apps-certification.html

Adobe Sign

Adobe Sign API Implementation Guide 19

Configuring OAuth for Your Application
If you will be using OAuth with your application, you must configure OAuth. Please note your "Client Id" and
"Client Secret". You will need this information to exchange tokens. Before you begin, please identify which
Uniform Resource Identifier (URI) or URIs should be used. Please note that the redirectUri specified in your
OAuth requests must belong to this list of URIs. You can include multiple uris separated by commas in your list.
Only an Account or Group Admin can configure OAuth for an application.

To configure OAuth for your application:

1. Click the Account tab, click on Adobe Sign API, then click API Applications.

Adobe Sign

Adobe Sign API Implementation Guide 20

2. On the API Applications page, click to select the application to be configured.

Adobe Sign

Adobe Sign API Implementation Guide 21

3. Click Configure OAuth for Application.

The Configure OAuth dialog displays.

Adobe Sign

Adobe Sign API Implementation Guide 22

Adobe Sign

Adobe Sign API Implementation Guide 23

4. In the Configure OAuth dialog, do the following:

a. Enter a single Redirect URI or multiple URIs separated by commas. The Redirect URI is the page on
your website that users will be returned to after the OAuth flow.

b. Enable each of the required scopes as required then select a modifier (self, group, account) for each.

c. Click Save.

Adobe Sign

Adobe Sign API Implementation Guide 24

Adobe Sign Scenarios
The following scenarios describe the process of building integrations between applications and Adobe Sign
using the REST and SOAP-based APIs.

Scenario 1: Sending & Tracking from an Application with REST-based API
This common scenario involves a 3rd party application (e.g., a CRM system or a document management
system) sending document(s) for signature either automatically or due to user-initiated actions. The status of
the document and the audit trail need to be exposed in the sending application and when the document is
signed, a PDF copy of the signed agreement is retrieved and stored in the application.

This integration scenario can be accomplished as follows:

1. Sending a document for Signature: To send a document out for signature through the Adobe Sign REST-
based API, you must first call /transientDocuments, POST to upload the document. This is a multipart
request consisting of filename, mime type, and the file stream. The returned transientDocument ID is to be
used to refer to the document in the agreement creation call (/agreements, POST). The application will
specify the recipients and other sending options required for the transaction. The application can specify a
callback URL that will be used by Adobe Sign to notify the external application when an event occurs or
deliver the signed and completed document to the calling system when the signature process is complete.

Adobe Sign returns a unique Agreement Id for each request. This Agreement Id can be used to retrieve up-
to-date status of the agreement either by polling or when Adobe Sign notifies the calling application of
change of status for the document or for retrieving the signed copy of the agreement.

2. Checking the status of an agreement: You can get the most current status of an agreement by calling
/agreement/{agreementId} GET. This method takes your OAuth token in the header and Agreement Id as a
parameter. Adobe Sign will return the current status of the agreement and a complete history of events
that have happened thus far on the particular agreement.

Adobe Sign supports two mechanisms for an external application to reflect the most current or up-to-date
status for an agreement sent for signature. The simplest mechanism is for your application to provide a
callback URL when sending the document for signature. Adobe Sign will then ping your service whenever
the status of the agreement changes. Upon receiving a callback, your application can then call Adobe Sign
to get the latest status on the agreement. The callback URL included in the request must be accessible to
Adobe Sign (i.e., must be Internet facing).

By default, the callback URL is called whenever an event involving a particular transaction occurs in Adobe
Sign. The callback includes the Document Key of the agreement whose status has changed, the current
status of the agreement, and information on the event that resulted in the callback. Your application logic
can evaluate the received status and decide whether to perform an action in the calling system. The
callback request looks something like:

https://<yourURL>? documentKey=<docKey>&status=<documentStatus>&eventType=<event>

In addition to HTTP GET, Adobe Sign also alternatively supports HTTP PUT for receiving events about the
signature process, included in the request will be the completed signed PDF. Adobe Sign uses an HTTP

Adobe Sign

Adobe Sign API Implementation Guide 25

PUT request to return the signed PDF. Please ensure that your application can correctly handle such a
request. Please contact Adobe Support or your assigned Client Success Manager to get your account
configured to receive HTTP PUT events.

The second mechanism to reflect the most current or up-to-date status of an agreement sent for signature
is for your application to periodically poll Adobe Sign regarding the agreement’s status. The upside of
polling is that it can be used in cases where your calling application is behind your firewall and not
accessible from the Internet thus enabling Adobe Sign to complete a callback. The down side of polling is
that you have to create a scheduling mechanism within your application to periodically query the status of
all documents that were not yet signed, check whether the document’s status has changed, and update
your system accordingly. If you choose to use polling, we recommend you have different policies based on
document “age” In other words, you would reduce the frequency of polling for documents not signed after
X days.

3. Retrieving the signed PDF: Once an agreement is signed, your application can retrieve the signed copy of
the PDF and store that within your application. The signed agreement can be retrieved by calling
/agreements/{agreementId}/combinedDocument GET. This will return a single combined PDF document for
the documents associated with the agreement. To retrieve any supporting document, you can call
/agreements/{agreementId}/documents GET. This will return the IDs of all the main and supporting
documents of an agreement. The returned document ID can be used in the
/agreements/{agreementId}/documents/{documentId} GET call to retrieve the file stream of a document of
the agreement.

Depending on your application, you can also retrieve the form field data that your signer may have filled in
to the document when signing the document by calling /agreements/{agreementId}/formData GET. The
data can be used to update your calling application with the information provided by the signer during
signing.

Scenario 2: Sending & Tracking from an Application with SOAP-based
API
This common scenario involves a 3rd party application (e.g., a CRM system or a document management
system) sending document(s) for signature either automatically or due to user-initiated actions. The status of
the document and the audit trail need to be exposed in the sending application and when the document is
signed, a PDF copy of the signed agreement is retrieved and stored in the application.

This integration scenario can be accomplished as follows:

1. Sending a document for Signature: To send a document out for signature through the Adobe Sign SOAP-
based API, call the sendDocument method. The application will specify the recipients, files and other
sending options required for the transaction. The application will specify a callback URL that will be used
by Adobe Sign to notify the external application when an event occurs or deliver the signed and
completed document to the calling system when the signature process is complete.

Adobe Sign returns a unique Document Key for each request. This Document Key can be used to retrieve
up-to-date status of the agreement either by polling or when Adobe Sign notifies the calling application of
change of status for the document or for retrieving the signed copy of the agreement.

Adobe Sign

Adobe Sign API Implementation Guide 26

2. Checking the status of a document: You can get the most current status of a document by using the
getDocumentInfo method. This method takes your OAuth token and Document Key parameters. Adobe
Sign will return the current status of the agreement and a complete history of events that have happened
thus far on the particular document.

Adobe Sign supports two mechanisms for an external application to reflect the most current or up-to-date
status for an agreement sent for signature. The simplest mechanism is for your application to provide a
callback URL when sending the document for signature. Adobe Sign will then ping your service whenever
the status of the agreement changes. Upon receiving a callback your application can then call Adobe Sign
to get the latest status on the agreement. The callback URL included in the request must be accessible to
Adobe Sign (i.e., must be Internet facing).

By default, the callback URL is called whenever an event involving a particular transaction occurs in Adobe
Sign. The callback includes the Document Key of the agreement whose status has changed, the current
status of the agreement, and information on the event that resulted in the callback. Your application logic
can evaluate the received status and decide whether to perform an action in the calling system. The
callback request looks something like:

https://<yourURL>? documentKey=<docKey>&status=<documentStatus>&eventType=<event>

In addition to HTTP GET, Adobe Sign also alternatively supports HTTP POST for receiving events about the
signature process, included in the request will be the completed signed PDF. Adobe Sign uses an HTTP
POST request to return the signed PDF. Please ensure that your application can correctly handle such a
request. Please contact Adobe Support or your assigned Client Success Manager to get your account
configured to receive HTTP POST events.

The second mechanism to reflect the most current or up-to-date status of an agreement sent for signature
is for your application to periodically poll Adobe Sign regarding the agreement’s status. The upside of
polling is that it can be used in cases where your calling application is behind your firewall and not
accessible from the Internet thus enabling Adobe Sign to complete a callback. The down side of polling is
that you have to create a scheduling mechanism within your application to periodically query the status of
all documents that were not yet signed, check whether the document’s status has changed, and update
your system accordingly. If you choose to use polling, we recommend you have different policies based on
document “age”. In other words, you would reduce the frequency of polling for documents not signed after
X days.

3. Retrieving the signed PDF: Once an agreement is signed, your application can retrieve the signed copy of
the PDF and store that within your application. The signed agreement can be retrieved using the
getDocuments method in the API. This API method supports several arguments to allow retrieving the
signed documents separately or allow retrieving any supporting documents that the signer may have
uploaded during signing, etc.

Depending on your application, you can also retrieve the form field data that your signer may have filled in
to the document when signing the document using the getFormData method. The data can be used to
update your calling application with the information provided by the signer during signing.

Adobe Sign

Adobe Sign API Implementation Guide 27

Scenario 3: Embedding Adobe Sign eSigning in An Application
Another common scenario involves an application where users need to sign documents within the application
as part of a process. For example, a partner portal for onboarding new partners that requires them to sign an
NDA or an e-commerce application that requires users to sign a purchase agreement. In these cases, the
document is not sent to recipients for signature, but is presented to them within your application.

For this type of integration, Adobe Sign supports creating a Widget through the Adobe Sign APIs. A widget is
like a reusable template that can be presented to users multiple times and signed multiple times. Each time a
widget gets signed, the signed document becomes a separate instance of the document. A good way to think
about the relationship of the widget and the documents signed through it is a parent-child relationship.

A widget can be presented either to an anonymous signer, in which case Adobe Sign can validate the signer’s
identity as part of the signing process, or to a signer whose identity can be specified through the API by the
hosting application.

For a simple example using Widgets, go to http://www.formerator.com.

The Widget integration scenario can be accomplished as follows using the Adobe Sign REST-based API:

1. Creating a Widget: To create a widget through the API, you must first call /transientDocuments, POST to
upload the document. This is a multipart request consisting of filename, mime type, and the file stream.
The returned transientDocument ID is to be used to refer to the document in the widget creation call
(/widgets, POST). The API end-point, in addition to the widget key, returns an embed-code, which can be
used for embedding the widget within your application as well as a URL at which the widget gets hosted.
The URL can be posted within your application for users to navigate to for signing a document. If the
identity of the person signing the widget is known a priori, the widget can also be personalized with the
signer’s information using the provided personalization method PUT /widgets/{widgetId}/personalize.

When creating the widget your application may also specify the address of the Web page that users will be
redirected to when they successfully complete signing the widget.

2. Checking the status of documents signed through a widget: As mentioned earlier, each time a widget is
signed a separate instance of a document gets created.

To get the agreements created using the widget, call /widgets/{widgetID}/agreements GET where widgetID
is the key returned by the service while creating the widget.

To retrieve the data filled by the users at the time of signing the widget, call /widgets/{widgetID}/formData
GET. The service returns data in comma-separated value (CSV) file format.

The first line includes the column header names and each row represents a distinct instance of the widget.
The document keys of all child widgets will be in the first column, under “EchoSign transaction number”.
See example below:

EchoSign transaction number, Agreement name, signed, email
12ABC3D456E7F,test widget,2/5/10 09:21,email@domain.com
98ZYX7W654V3U,test widget,2/6/10 11:56, email2@domain.com

mailto:21%2Cemail@domain.com
mailto:21%2Cemail@domain.com
mailto:email2@domain.com

Adobe Sign

Adobe Sign API Implementation Guide 28

If the child document is signed by two signers, there will be two rows in the CSV with the same document
key. See example below:

Exposing Additional Adobe Sign Actions
In addition to sending documents for signature and tracking the status of the document, your application can
also expose additional actions to its users allowing them to cancel an agreement when it’s still out for signature
or send a reminder to the current signer while the document is waiting for signature. These additional actions
allow users to interact with the Adobe Sign functionality entirely from within your application.

See the Getting Started document for a list of available documentation resources.

EchoSign transaction number, Agreement name, signed, email
12ABC3D456E7F,test widget,2/5/10 09:21,email@domain.com
98ZYX7W654V3U,test widget,2/6/10 11:56,email2@domain.com
12ABC3D456E7F,test widget,2/6/10 13:37,email3@domain.com

mailto:21%2Cemail@domain.com
mailto:21%2Cemail@domain.com
mailto:56%2Cemail2@domain.com
mailto:37%2Cemail3@domain.com

Adobe Sign

Adobe Sign API Implementation Guide 29

Adobe Sign Events
The functionality of Adobe Sign can be incorporated into external applications by directly embedding the
Adobe Sign user interface (UI) within these applications. Adobe Sign also supports sending events (status
updates) to the third party application pages so that the external application is aware of the actions that
the user is performing with the Adobe Sign UI. These events are passed between the controller window
and a receiver window running on different domains for event communication. This section provides a
guide to all the events supported by Adobe Sign.

Event System Requirements

Using the event framework within Adobe Sign requires the user of a browser, which supports postMessage.
See https://developer.mozilla.org/en-US/docs/Web/API/Window.postMessage for support browsers.

List of Supported Events
The following table lists the Adobe Sign supported UI events that can be embedded and presented within the
UI of external applications.

Event Type Data Description

WORKFLOW EVENTS

'ESIGN' NONE This event gets fired after a user has successfully
signed an agreement.

'REJECT' NONE This event is fired after a user rejects an
agreement.

'PREFILL' NONE This event is fired after a user completes prefilling
an agreement and sends it.

PAGE LOAD EVENTS

'PAGE_LOAD' pageName: 'POST_SEND'

apiAgreementId: '<agreement
capability>’

This event fires when an agreement has been
successfully sent and the post send page has been
loaded.

'PAGE_LOAD' pageName:
'DIGSIG_DOWNLOAD'

This is a special event that is fired for documents
requiring Digital Signatures. This event fires when
a user has completed all the required fields in a
document and page to download the document
for Digital Signature gets loaded.

'PAGE_LOAD' pageName: 'AUTHORING' This event fires when the form-field authoring
page loads for an agreement.

'PAGE_LOAD' pageName: 'DELEGATION' This event fires when the page from which an
agreement can be delegated gets loaded. The

https://developer.mozilla.org/en-US/docs/Web/API/Window.postMessage

Adobe Sign

Adobe Sign API Implementation Guide 30

Event Type Data Description

loading of the page does guarantee that
delegation has or will actually occur.

'PAGE_LOAD' pageName: 'MANAGE' This event fires when the manage page loads.

'PAGE_LOAD' pageName: 'LOGIN' This event fires when the login page loads.

SESSION EVENTS
'SESSION_TIME
OUT'

message:'PRE_SESSION_TIM
EOUT'

warningTimeMinutes: <float>

expirationTimeMinutes: <float>

This event is triggered two seconds before session
timeout dialogue is displayed to the user. The UI
shows “Your session is about to expire" message to
the user.

The warningTimeMinutes and expirationTimeMi
nutes values correspond to the warning & session
timeout times in minutes.

'SESSION_TIME
OUT'

message:'POST_SESSION_TI
MEOUT'

warningTimeMinutes: <float>

expirationTimeMinutes: <float>

This event is triggered when the user’s session times
out and the user is notified.

'ERROR' message: <varies> This event fires when an error dialog or an error
page is displayed to the user.

System Error: 500, 503 is returned

General user error message: document
processing or conversion errors

USER ACTION EVENTS

'CLICK' pageName: 'POST_SEND' or
'POST_SIGN'

target: 'MANAGE_LINK'

url: '<full URL with
agreementId>'

apiAgreementId: '<agreement
capability>'

This event fires when the user clicks on the
"Manage this document" button in the post-send
page. The URL data contains the full URL needed
to bring up the manage page with the particular
agreement selected. The apiAgreementId is the
DocumentKey, used by client application making
the API calls.

'CLICK' pageName: 'POST_SEND' or
'POST_SIGN'

target:
'SEND_ANOTHER_LINK'

This event fires when the user clicks on the "Send
another document" button.

Adobe Sign

Adobe Sign API Implementation Guide 31

Using Adobe Sign Events

Adding an Event Handler on the Parent Page

In order to use the events fired by Adobe Sign, the external application should include a callback handler in
the parent page that embeds the Adobe Sign application UI.

Below is an example event handler that can be placed in the parent page:

function eventHandler(e) {
 if (e.origin == "https://secure.echosign.com") {
 console.log("Event from EchoSign!", JSON.parse(e.data)); }
 else {
 console.log("Do not process this!");

 }
}
if (!window.addEventListener) {
 window.attachEvent('onmessage', eventHandler);
}
else {
 window.addEventListener('message', eventHandler, false);
}

Embedding the Adobe Sign UI in an iFrame

Adobe Sign provides APIs that allow embedding the Adobe Sign UI into an external application. The API call
returns a URL which can directly be embedded into a child iFrame of the parent which includes the event
listener.

<script type='text/javascript' language='JavaScript' src='ECHOSIGN URL'></script>

	Overview
	Getting Started

	Adobe Sign Interface
	Creating An Integration Key
	Retrieving Your Integration Key
	Revoking Access and OAuth Tokens
	Creating Your Application
	Configuring OAuth for Your Application

	Adobe Sign Scenarios
	Scenario 1: Sending & Tracking from an Application with REST-based API
	Scenario 2: Sending & Tracking from an Application with SOAP-based API
	Scenario 3: Embedding Adobe Sign eSigning in An Application
	Exposing Additional Adobe Sign Actions

	Adobe Sign Events
	Event System Requirements
	List of Supported Events
	Using Adobe Sign Events
	Adding an Event Handler on the Parent Page
	Embedding the Adobe Sign UI in an iFrame

